using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Runtime.Serialization.Formatters.Binary; using System.IO; using LFP_Manager.DataStructure; using LFP_Manager.Utils; namespace LFP_Manager.Function { class csMakeDataFunction { //0x0001: Over voltage warning //0x0002: Cell Over voltage warning //0x0004: Low voltage warning //0x0008: Low cell voltage warning //0x0010: Charge over current warning //0x0020: Discharge over current warning //0x0040: ambient temp warning //0x0080: MOSFET over temp warning //0x0100: Charge over temperature warning //0x0200: Discharge over temperature warning //0x0400: Charge low temperature warning //0x0800: Discharge low temperature warning //0x1000: Low capacity warning //0x2000: Low SOH warning private static ushort MakeAlarmTripData(int id, short ndata, CsDeviceData.DeviceModuleData mData) { bool[] aData = csUtils.Int16ToBitArray(ndata); int bFault = mData.StatusData.protect; int bWarning = mData.StatusData.warning; int i = 0; if (id == 0) { // Warning if (aData[i++]) bWarning |= (1 << 1); // Bit 0 : Cell Over voltage warning --> Bit 1 else bWarning &= ~(1 << 1); if (aData[i++]) bWarning |= (1 << 3); // Bit 1 : Cell Under voltage warning --> Bit 3 else bWarning &= ~(1 << 3); if (aData[i++]) bWarning |= (1 << 0); // Bit 2 : Pack Over voltage warning --> Bit 0 else bWarning &= ~(1 << 0); if (aData[i++]) bWarning |= (1 << 2); // Bit 3 : Pack Under voltage warning --> Bit 2 else bWarning &= ~(1 << 2); if (aData[i++]) bWarning |= (1 << 4); // Bit 4 : Charge over current warning --> Bit 4 else bWarning &= ~(1 << 4); if (aData[i++]) bWarning |= (1 << 5); // Bit 5 : Discharge over current warning --> Bit 5 else bWarning &= ~(1 << 5); if (aData[i++]) bWarning |= (1 << 6); // Bit 6 : Env over temperature warning --> Bit 6 else bWarning &= ~(1 << 6); //if (aData[i++]) bWarning |= (1 << 7); // Bit 7 : Env under temperature warning --> Bit 7 //else bWarning &= ~(1 << 7); i++; // 07 Reserved if (aData[i++]) bWarning |= (1 << 8); // Bit 8 : Charge over temperature warning --> Bit 8 else bWarning &= ~(1 << 8); if (aData[i++]) bWarning |= (1 << 10); // Bit 9 : Charge under temperature warning --> Bit 10 else bWarning &= ~(1 << 10); if (aData[i++]) bWarning |= (1 << 9); // Bit 10 : Discharge over temperature warning --> Bit 9 else bWarning &= ~(1 << 9); if (aData[i++]) bWarning |= (1 << 11); // Bit 11 : Discharge under temperature warning --> Bit 11 else bWarning &= ~(1 << 11); if (aData[i++]) bWarning |= (1 << 12); // Bit 12 : Low capacity warning --> Bit 12 else bWarning &= ~(1 << 12); i++; // 13 return (ushort)bWarning; } else { // Protection if (aData[i++]) bFault |= (1 << 2); // Bit 0 : Over voltage warning else bFault &= ~(1 << 2); if (aData[i++]) bFault |= (1 << 4); // Bit 1 : Cell Over voltage warning else bFault &= ~(1 << 4); if (aData[i++]) bFault |= (1 << 3); // Bit 2 : Low voltage warning else bFault &= ~(1 << 3); if (aData[i++]) bFault |= (1 << 5); // Bit 3 : Low cell voltage warning else bFault &= ~(1 << 5); if (aData[i++]) bFault |= (1 << 6); // Bit 4 : Charge over current warning else bFault &= ~(1 << 6); if (aData[i++]) bFault |= (1 << 7); // Bit 5 : Discharge over current warning else bFault &= ~(1 << 7); i++; // 06 Abnormal balancing current i++; // 07 Reserved if ((aData[8]) || (aData[9])) bFault |= (1 << 0); // Bit 8 : Charge over temperature warning, Bit 9 : Discharge over temperature warning else bFault &= ~(1 << 0); i++; // 08 i++; // 09 if ((aData[10]) || (aData[11])) bFault |= (1 << 1); // Bit 10 : Charge low temperature warning, Bit 11 : Discharge low temperature warning else bFault &= ~(1 << 1); i++; // 10 i++; // 11 i++; // 12 i++; // 13 if (aData[i++]) bFault |= (1 << 9); // 14 Cell Voltage Difference Warning else bFault &= ~(1 << 9); return (ushort)bFault; } } public static void SetSnmpData(int index, object sdata, ref CsDeviceData.DeviceModuleData aModuleData) { switch (index) { case 1: aModuleData.ValueData.voltage = (short)(Convert.ToDouble(sdata) / 10); break; // voltageOfPack - 0.01V case 2: aModuleData.ValueData.current = (short)(Convert.ToDouble(sdata) - 10000); break; // current - 0.1A, Offset: 10000 case 3: // Cell Voltage #1 case 4: // Cell Voltage #2 case 5: // Cell Voltage #3 case 6: // Cell Voltage #4 case 7: // Cell Voltage #5 case 8: // Cell Voltage #6 case 9: // Cell Voltage #7 case 10: // Cell Voltage #8 case 11: // Cell Voltage #9 case 12: // Cell Voltage #10 case 13: // Cell Voltage #11 case 14: // Cell Voltage #12 case 15: // Cell Voltage #13 case 16: // Cell Voltage #14 case 17: aModuleData.ValueData.CellVoltage[index - 3] = (ushort)(Convert.ToDouble(sdata) / 1); csSerialCommFunction.MakeMaxAvgMinCellVoltage(ref aModuleData); break; // Cell Voltage #16 case 19: aModuleData.ValueData.MosTemperature = (short)(Convert.ToDouble(sdata) * 10); break; // Temp of PCB - C case 20: aModuleData.ValueData.AmbTemperature = (short)(Convert.ToDouble(sdata) * 10); break; // Temp of Ambient - C case 21: aModuleData.AvgData.maxTemp = (short)(Convert.ToDouble(sdata) * 10); break; // Max. Temp case 22: aModuleData.ValueData.remainingCapacity = (short)(Convert.ToDouble(sdata) * 1); break; // Remaining Capacity case 24: aModuleData.ValueData.SOH = (short)(Convert.ToDouble(sdata) / 10); break; // stateOfHealth case 25: aModuleData.ValueData.SOC = (short)(Convert.ToDouble(sdata) / 10); break; // Relatvie State Of Charge case 26: aModuleData.StatusData.status = (ushort)(Convert.ToDouble(sdata) / 1); break; // Status case 27: aModuleData.StatusData.warning = (ushort)CsAlarmDefine.DevWarningToGui(Convert.ToInt32(sdata)); break; // warning case 28: aModuleData.StatusData.protect = (ushort)CsAlarmDefine.DevProtectToGui(Convert.ToInt32(sdata)); break; // protection case 29: // FaultAndStatus aModuleData.StatusData.faultAndStatus = (ushort)(Convert.ToDouble(sdata) / 1); //aModuleData.StatusData.status = (short)(((short)Convert.ToDouble(sdata) >> 8) & 0x0003); MakeAlarm(ref aModuleData); break; case 30: aModuleData.ValueData.cycleCount = (ushort)(Convert.ToDouble(sdata) / 1); break; // cycleCount case 31: // Temperature #1 case 32: // Temperature #2 case 33: // Temperature #3 case 34: aModuleData.ValueData.CellTemperature[index - 31] = (short)(Convert.ToDouble(sdata) * 10); break; // Temperature #4 case 37: aModuleData.cellQty = (short)(Convert.ToDouble(sdata) * 1); break; // Cell Number case 38: aModuleData.ValueData.designedCapacity = (short)(Convert.ToDouble(sdata) * 1); break; // Cell Number case 40: aModuleData.ValueData.RecMaxBattChgCurrLmt = (short)(Convert.ToDouble(sdata) * 1); break; // Max. Charge Current - A case 41: aModuleData.ntcQty = (short)(Convert.ToDouble(sdata) * 1); break; // NTC Number case 42: aModuleData.BmsDateTime.year = (short)(Convert.ToDouble(sdata) * 1); break; // BMS DateTime - Year case 43: aModuleData.BmsDateTime.month = (short)(Convert.ToDouble(sdata) * 1); break; // BMS DateTime - Month case 44: aModuleData.BmsDateTime.day = (short)(Convert.ToDouble(sdata) * 1); break; // BMS DateTime - Day case 45: aModuleData.BmsDateTime.hour = (short)(Convert.ToDouble(sdata) * 1); break; // BMS DateTime - Hour case 46: aModuleData.BmsDateTime.minute = (short)(Convert.ToDouble(sdata) * 1); break; // BMS DateTime - Minute case 47: aModuleData.BmsDateTime.second = (short)(Convert.ToDouble(sdata) * 1); // BMS DateTime - Second aModuleData.BmsDateTime.DateTimeStr = string.Format("{0:0000}-{1:00}-{2:00} {3:00}:{4:00}:{5:00}" , aModuleData.BmsDateTime.year , aModuleData.BmsDateTime.month , aModuleData.BmsDateTime.day , aModuleData.BmsDateTime.hour , aModuleData.BmsDateTime.minute , aModuleData.BmsDateTime.second ); break; case 48: aModuleData.FloatVoltage = (int)Convert.ToDouble(sdata); break; // Float Voltage - 0.01V case 49: aModuleData.BoostVoltage = (int)Convert.ToDouble(sdata); break; // Boost Voltage - 0.01V case 50: aModuleData.MinChargeTemp = (int)Convert.ToDouble(sdata); break; // Min. Charge Temp - C case 51: aModuleData.MaxChargeTemp = (int)Convert.ToDouble(sdata); break; // Max. Charge Temp - C case 60: aModuleData.Information.ModelName = (string)sdata; break; // Model - string case 61: aModuleData.Information.SwProductRev = (string)sdata; break; // BMS Fw Version - string case 62: aModuleData.Information.HwSerialNumber = (string)sdata; break; // Pack Serial Number - string case 63: aModuleData.Information.VendorName = (string)sdata; break; // Vendor Name - string case 64: aModuleData.Information.ProductCode = (string)sdata; break; // Product Code - string case 65: aModuleData.Information.MajorMinorRev = (string)sdata; break; // Major Minor Revision - string case 66: aModuleData.Information.HwProductRev = (string)sdata; break; // Hardware Product Revision - string case 67: aModuleData.Information.ManufacturingDate = (string)sdata; break; // Manufacturing Date - string default: break; } } public static void MakeAlarm(ref CsDeviceData.DeviceModuleData aModuleData) { if (((aModuleData.StatusData.faultAndStatus >> 14) & 0x0001) == 0x0001) { aModuleData.StatusData.batteryStatus = 4; // Anti-theft Gyroscope } else if (((aModuleData.StatusData.faultAndStatus >> 15) & 0x0001) == 0x0001) { aModuleData.StatusData.batteryStatus = 5; // Anti-theft Comm. } else if (aModuleData.StatusData.protect != 0x0000) { aModuleData.StatusData.batteryStatus = 2; } else if (aModuleData.StatusData.warning != 0x0000) { aModuleData.StatusData.batteryStatus = 1; } else { aModuleData.StatusData.batteryStatus = 0; } } } }